Model Selection
Selecting the appropriate AI model is crucial for achieving optimal performance, cost-effectiveness, and user experience in your Talk Box applications. This guide covers the key considerations and trade-offs for different model types and providers.
Understanding Model Categories
Model Capabilities by Size
AI models fall into different capability tiers based on their parameter count and training:
import talk_box as tb
# Tier 1: Large, most capable models (best for complex reasoning)
advanced_models = [
"gpt-4", # OpenAI's most capable model
"gpt-4-turbo", # Faster, more cost-effective GPT-4
"claude-3-opus", # Anthropic's most capable model
"gemini-pro", # Google's advanced model
]
# Tier 2: Balanced models (good performance/cost ratio)
balanced_models = [
"gpt-3.5-turbo", # OpenAI's reliable balanced option (recommended default)
"claude-3-sonnet", # Anthropic's balanced model
"gemini-flash", # Google's fast, efficient model
]
# Tier 3: Fast, lightweight models (best for simple tasks)
lightweight_models = [
"gpt-3.5-turbo-16k", # Extended context version
"claude-3-haiku", # Anthropic's fastest model
]Model Characteristics Comparison
| Model | Reasoning | Speed | Cost | Context Length | Best Use Cases |
|---|---|---|---|---|---|
| GPT-4 | Excellent | Slow | High | 8K-128K | Complex analysis, research, creative writing |
| GPT-4 Turbo | Excellent | Medium | Medium | 128K | Production apps needing GPT-4 quality |
| GPT-4o | Excellent | Fast | Medium | 128K | Multimodal tasks, excellent default choice |
| GPT-3.5 Turbo | Good | Fast | Low | 4K-16K | General chatbots, quick responses |
| Claude 3 Opus | Excellent | Slow | High | 200K | Long documents, detailed analysis |
| Claude 3 Sonnet | Very Good | Medium | Medium | 200K | Balanced apps, content creation |
| Claude 3 Haiku | Good | Very Fast | Very Low | 200K | High-volume, simple interactions |
| Gemini Pro | Very Good | Medium | Medium | 32K | Multimodal tasks, Google ecosystem |
Model Selection Framework
1. Define Your Requirements
Start by clearly defining your application’s needs:
class ModelRequirements:
"""Framework for defining model selection criteria."""
def __init__(self):
self.task_complexity = None # simple, moderate, complex
self.response_time_requirement = None # <1s, <3s, <10s, flexible
self.cost_sensitivity = None # low, medium, high
self.context_length_needed = None # <4K, <16K, <128K, >128K
self.accuracy_requirement = None # acceptable, good, excellent
self.volume_expectation = None # <100/day, <1K/day, >1K/day
def recommend_models(self):
"""Recommend models based on requirements."""
recommendations = []
if self.task_complexity == "complex":
if self.cost_sensitivity == "low":
recommendations.extend(["gpt-4", "claude-3-opus"])
else:
recommendations.extend(["gpt-4-turbo", "claude-3-sonnet"])
elif self.task_complexity == "moderate":
if self.response_time_requirement == "<1s":
recommendations.extend(["gpt-3.5-turbo", "claude-3-haiku"])
else:
recommendations.extend(["gpt-4-turbo", "claude-3-sonnet"])
elif self.task_complexity == "simple":
recommendations.extend(["gpt-3.5-turbo", "claude-3-haiku"])
return recommendations
# Example usage
requirements = ModelRequirements()
requirements.task_complexity = "moderate"
requirements.response_time_requirement = "<3s"
requirements.cost_sensitivity = "medium"
requirements.context_length_needed = "<16K"
recommended_models = requirements.recommend_models()
print(f"Recommended models: {recommended_models}")2. Task-Specific Model Selection
Different tasks benefit from different model strengths:
def select_model_for_task(task_type: str) -> str:
"""Select optimal model based on task type."""
task_model_map = {
# Code-related tasks
"code_review": "gpt-4", # Needs deep reasoning
"code_generation": "gpt-4-turbo", # Good balance of quality/speed
"syntax_checking": "gpt-3.5-turbo", # Simple pattern matching
# Analysis tasks
"document_analysis": "claude-3-opus", # Excellent with long text
"data_interpretation": "gpt-4", # Strong analytical reasoning
"summarization": "claude-3-sonnet", # Good balance for summaries
# Creative tasks
"creative_writing": "gpt-4", # Best creative capabilities
"content_editing": "claude-3-sonnet", # Good language skills
"translation": "gpt-4-turbo", # Strong multilingual
# Conversational tasks
"customer_support": "gpt-3.5-turbo", # Fast, cost-effective
"general_chat": "claude-3-haiku", # Very responsive
"educational_tutor": "gpt-4-turbo", # Needs good explanations
# Technical tasks
"api_documentation": "gpt-4", # Needs technical accuracy
"troubleshooting": "claude-3-sonnet", # Good reasoning, fast
"configuration": "gpt-3.5-turbo", # Straightforward tasks
}
return task_model_map.get(task_type, "gpt-3.5-turbo") # Default fallback
# Example specialized bots
code_reviewer = (tb.ChatBot()
.model(select_model_for_task("code_review"))
.persona("senior developer", "thorough code analysis")
.temperature(0.3)) # Lower creativity for accuracy
content_creator = (tb.ChatBot()
.model(select_model_for_task("creative_writing"))
.persona("creative writer", "engaging content creation")
.temperature(0.8)) # Higher creativity
support_bot = (tb.ChatBot()
.model(select_model_for_task("customer_support"))
.persona("helpful support agent", "quick problem resolution")
.temperature(0.4)) # Balanced and consistent3. Performance vs Cost Optimization
import time
from dataclasses import dataclass
from typing import List, Dict
@dataclass
class ModelPerformanceMetrics:
"""Track model performance metrics."""
model_name: str
avg_response_time: float
cost_per_1k_tokens: float
accuracy_score: float # 0-1 scale
context_limit: int
class ModelOptimizer:
"""Optimize model selection based on performance and cost."""
def __init__(self):
# Approximate metrics (update with real data)
self.model_metrics = {
"gpt-4": ModelPerformanceMetrics(
model_name="gpt-4",
avg_response_time=8.0,
cost_per_1k_tokens=0.03,
accuracy_score=0.95,
context_limit=8192
),
"gpt-4-turbo": ModelPerformanceMetrics(
model_name="gpt-4-turbo",
avg_response_time=4.0,
cost_per_1k_tokens=0.01,
accuracy_score=0.93,
context_limit=128000
),
"gpt-4o": ModelPerformanceMetrics(
model_name="gpt-4o",
avg_response_time=3.0,
cost_per_1k_tokens=0.005,
accuracy_score=0.94,
context_limit=128000
),
"gpt-3.5-turbo": ModelPerformanceMetrics(
model_name="gpt-3.5-turbo",
avg_response_time=1.5,
cost_per_1k_tokens=0.002,
accuracy_score=0.85,
context_limit=4096
),
"claude-3-opus": ModelPerformanceMetrics(
model_name="claude-3-opus",
avg_response_time=10.0,
cost_per_1k_tokens=0.015,
accuracy_score=0.96,
context_limit=200000
),
"claude-3-sonnet": ModelPerformanceMetrics(
model_name="claude-3-sonnet",
avg_response_time=3.0,
cost_per_1k_tokens=0.003,
accuracy_score=0.90,
context_limit=200000
),
"claude-3-haiku": ModelPerformanceMetrics(
model_name="claude-3-haiku",
avg_response_time=0.8,
cost_per_1k_tokens=0.00025,
accuracy_score=0.82,
context_limit=200000
)
}
def calculate_cost_effectiveness(self,
model_name: str,
expected_tokens_per_request: int,
requests_per_day: int) -> Dict[str, float]:
"""Calculate cost-effectiveness metrics."""
metrics = self.model_metrics[model_name]
# Daily costs
daily_token_cost = (expected_tokens_per_request * requests_per_day *
metrics.cost_per_1k_tokens / 1000)
# Monthly costs
monthly_cost = daily_token_cost * 30
# Effectiveness score (accuracy per dollar)
effectiveness = metrics.accuracy_score / daily_token_cost if daily_token_cost > 0 else 0
return {
"daily_cost": daily_token_cost,
"monthly_cost": monthly_cost,
"cost_effectiveness": effectiveness,
"avg_response_time": metrics.avg_response_time,
"accuracy_score": metrics.accuracy_score
}
def recommend_best_model(self,
expected_tokens: int,
daily_requests: int,
max_monthly_budget: float = None,
max_response_time: float = None,
min_accuracy: float = None) -> List[str]:
"""Recommend models based on constraints."""
recommendations = []
for model_name in self.model_metrics.keys():
metrics = self.calculate_cost_effectiveness(
model_name, expected_tokens, daily_requests
)
# Apply constraints
if max_monthly_budget and metrics["monthly_cost"] > max_monthly_budget:
continue
if max_response_time and metrics["avg_response_time"] > max_response_time:
continue
if min_accuracy and metrics["accuracy_score"] < min_accuracy:
continue
recommendations.append({
"model": model_name,
"metrics": metrics
})
# Sort by cost-effectiveness
recommendations.sort(key=lambda x: x["metrics"]["cost_effectiveness"], reverse=True)
return [rec["model"] for rec in recommendations]
# Example usage
optimizer = ModelOptimizer()
# Scenario: Customer support chatbot
support_recommendations = optimizer.recommend_best_model(
expected_tokens=500, # Average tokens per interaction
daily_requests=1000, # 1000 support requests per day
max_monthly_budget=200, # $200/month budget
max_response_time=3.0, # Must respond within 3 seconds
min_accuracy=0.80 # Minimum 80% accuracy
)
print(f"Best models for customer support: {support_recommendations}")
# Scenario: Complex document analysis
analysis_recommendations = optimizer.recommend_best_model(
expected_tokens=2000, # Longer analysis tasks
daily_requests=50, # Lower volume
max_monthly_budget=500, # Higher budget for quality
max_response_time=15.0, # Can wait longer for quality
min_accuracy=0.90 # Need high accuracy
)
print(f"Best models for document analysis: {analysis_recommendations}")Provider-Specific Considerations
OpenAI Models
def configure_openai_model(use_case: str) -> tb.ChatBot:
"""Configure OpenAI models for different use cases."""
if use_case == "production_chatbot":
return (tb.ChatBot()
.model("gpt-4-turbo") # Best balance for production
.temperature(0.7) # Balanced creativity
.max_tokens(1000)) # Reasonable response length
elif use_case == "creative_assistant":
return (tb.ChatBot()
.model("gpt-4") # Best creative capabilities
.temperature(0.9) # High creativity
.max_tokens(2000)) # Longer creative responses
elif use_case == "high_volume_support":
return (tb.ChatBot()
.model("gpt-3.5-turbo") # Cost-effective
.temperature(0.3) # Consistent responses
.max_tokens(500)) # Concise answers
elif use_case == "complex_analysis":
return (tb.ChatBot()
.model("gpt-4") # Best reasoning
.temperature(0.2) # Focused and analytical
.max_tokens(3000)) # Detailed analysis
# Usage examples
creative_bot = configure_openai_model("creative_assistant")
support_bot = configure_openai_model("high_volume_support")Anthropic Claude Models
def configure_claude_model(document_length: str, priority: str) -> tb.ChatBot:
"""Configure Claude models based on document length and priority."""
if document_length == "long" and priority == "quality":
return (tb.ChatBot()
.model("claude-3-opus") # Best for long documents
.temperature(0.4) # Balanced
.max_tokens(4000)) # Comprehensive responses
elif document_length == "medium" and priority == "speed":
return (tb.ChatBot()
.model("claude-3-sonnet") # Good balance
.temperature(0.5)
.max_tokens(2000))
elif priority == "cost":
return (tb.ChatBot()
.model("claude-3-haiku") # Most cost-effective
.temperature(0.6)
.max_tokens(1000))
else:
return (tb.ChatBot()
.model("claude-3-sonnet") # Default balanced choice
.temperature(0.5)
.max_tokens(2000))
# Document analysis examples
legal_doc_bot = configure_claude_model("long", "quality")
email_bot = configure_claude_model("short", "speed")
bulk_processing_bot = configure_claude_model("medium", "cost")Google Gemini Models
def configure_gemini_model(task_type: str) -> tb.ChatBot:
"""Configure Gemini models for different task types."""
if task_type == "multimodal":
return (tb.ChatBot()
.model("gemini-pro-vision") # For image + text
.temperature(0.6)
.max_tokens(2000))
elif task_type == "rapid_response":
return (tb.ChatBot()
.model("gemini-flash") # Fastest option
.temperature(0.4)
.max_tokens(1000))
else:
return (tb.ChatBot()
.model("gemini-pro") # General purpose
.temperature(0.7)
.max_tokens(1500))
# Task-specific bots
image_analyzer = configure_gemini_model("multimodal")
quick_qa_bot = configure_gemini_model("rapid_response")Dynamic Model Selection
Context-Aware Model Switching
class AdaptiveModelSelector:
"""Dynamically select models based on context and performance."""
def __init__(self):
self.performance_history = {}
self.fallback_models = ["gpt-3.5-turbo", "claude-3-haiku"]
def select_model(self,
message_length: int,
complexity_score: float,
response_time_requirement: float,
conversation_history: tb.Conversation = None) -> str:
"""Select optimal model based on context."""
# Analyze conversation complexity
if conversation_history:
context_complexity = self._analyze_conversation_complexity(conversation_history)
else:
context_complexity = 0.5 # Default
# Combine factors
overall_complexity = (complexity_score + context_complexity) / 2
# Model selection logic
if overall_complexity > 0.8 and response_time_requirement > 5.0:
return "gpt-4" # High complexity, can wait
elif overall_complexity > 0.6 and message_length > 1000:
return "claude-3-opus" # Long text analysis
elif response_time_requirement < 2.0:
return "gpt-3.5-turbo" # Speed priority
elif overall_complexity > 0.7:
return "gpt-4-turbo" # Balanced quality/speed
else:
return "claude-3-sonnet" # Default balanced choice
def _analyze_conversation_complexity(self, conversation: tb.Conversation) -> float:
"""Analyze conversation complexity (simplified)."""
messages = conversation.get_messages()
# Factors that increase complexity
factors = []
# Length factor
avg_length = sum(len(msg.content) for msg in messages) / len(messages)
length_factor = min(avg_length / 500, 1.0) # Normalize to 0-1
factors.append(length_factor)
# Technical terms factor (simplified)
technical_terms = ["algorithm", "optimize", "analyze", "complex", "detailed"]
total_text = " ".join(msg.content for msg in messages).lower()
tech_factor = sum(1 for term in technical_terms if term in total_text) / len(technical_terms)
factors.append(tech_factor)
# Question complexity factor
questions = [msg for msg in messages if "?" in msg.content]
question_factor = min(len(questions) / len(messages), 1.0)
factors.append(question_factor)
return sum(factors) / len(factors)
class SmartChatBot:
"""ChatBot with adaptive model selection."""
def __init__(self):
self.model_selector = AdaptiveModelSelector()
self.current_model = None
self.current_bot = None
def chat(self,
message: str,
conversation: tb.Conversation = None,
response_time_requirement: float = 5.0) -> tb.Conversation:
"""Chat with adaptive model selection."""
# Analyze message complexity
complexity_score = self._estimate_complexity(message)
# Select optimal model
selected_model = self.model_selector.select_model(
message_length=len(message),
complexity_score=complexity_score,
response_time_requirement=response_time_requirement,
conversation_history=conversation
)
# Create or update bot if model changed
if selected_model != self.current_model:
self.current_model = selected_model
self.current_bot = (tb.ChatBot()
.model(selected_model)
.temperature(0.7)
.max_tokens(2000))
print(f"Switched to model: {selected_model}")
# Make the chat call
try:
return self.current_bot.chat(message, conversation=conversation)
except Exception as e:
# Fallback to simpler model
print(f"Error with {selected_model}, falling back...")
fallback_bot = (tb.ChatBot()
.model("gpt-3.5-turbo")
.temperature(0.7)
.max_tokens(2000))
return fallback_bot.chat(message, conversation=conversation)
def _estimate_complexity(self, message: str) -> float:
"""Estimate message complexity (simplified)."""
factors = []
# Length factor
length_factor = min(len(message) / 1000, 1.0)
factors.append(length_factor)
# Technical terms
technical_indicators = [
"analyze", "optimize", "algorithm", "architecture", "implement",
"strategy", "complex", "detailed", "comprehensive", "evaluate"
]
tech_count = sum(1 for term in technical_indicators if term.lower() in message.lower())
tech_factor = min(tech_count / 5, 1.0)
factors.append(tech_factor)
# Question complexity
if "how" in message.lower() or "why" in message.lower():
factors.append(0.7)
elif "what" in message.lower():
factors.append(0.4)
return sum(factors) / len(factors) if factors else 0.3
# Usage example
smart_bot = SmartChatBot()
# Simple question - will use fast model
simple_response = smart_bot.chat(
"What is Python?",
response_time_requirement=1.0
)
# Complex analysis - will use powerful model
complex_response = smart_bot.chat(
"Analyze the architectural patterns in this large codebase and recommend optimization strategies for scalability and maintainability",
response_time_requirement=10.0
)Testing and Evaluation
Model Performance Comparison
import time
from typing import List, Dict, Any
class ModelComparator:
"""Compare performance across different models."""
def __init__(self, test_cases: List[str]):
self.test_cases = test_cases
self.results = {}
def evaluate_model(self, model_name: str, persona: str = None) -> Dict[str, Any]:
"""Evaluate a single model across test cases."""
bot = tb.ChatBot().model(model_name)
if persona:
bot = bot.persona(persona)
results = {
"model": model_name,
"response_times": [],
"response_lengths": [],
"responses": []
}
for test_case in self.test_cases:
start_time = time.time()
try:
response = bot.chat(test_case)
response_time = time.time() - start_time
response_content = response.get_last_message().content
results["response_times"].append(response_time)
results["response_lengths"].append(len(response_content))
results["responses"].append(response_content)
except Exception as e:
results["response_times"].append(None)
results["response_lengths"].append(None)
results["responses"].append(f"ERROR: {str(e)}")
# Calculate summary statistics
valid_times = [t for t in results["response_times"] if t is not None]
valid_lengths = [l for l in results["response_lengths"] if l is not None]
results["avg_response_time"] = sum(valid_times) / len(valid_times) if valid_times else None
results["avg_response_length"] = sum(valid_lengths) / len(valid_lengths) if valid_lengths else None
results["success_rate"] = len(valid_times) / len(self.test_cases)
return results
def compare_models(self, models: List[str], persona: str = None) -> Dict[str, Any]:
"""Compare multiple models."""
comparison_results = {}
for model in models:
print(f"Evaluating {model}...")
comparison_results[model] = self.evaluate_model(model, persona)
return comparison_results
def generate_report(self, comparison_results: Dict[str, Any]) -> str:
"""Generate a comparison report."""
report = "# Model Comparison Report\n\n"
# Summary table
report += "## Summary\n\n"
report += "| Model | Avg Response Time | Avg Length | Success Rate |\n"
report += "|-------|------------------|------------|---------------|\n"
for model, results in comparison_results.items():
avg_time = f"{results['avg_response_time']:.2f}s" if results['avg_response_time'] else "N/A"
avg_length = f"{results['avg_response_length']:.0f}" if results['avg_response_length'] else "N/A"
success_rate = f"{results['success_rate']*100:.1f}%"
report += f"| {model} | {avg_time} | {avg_length} | {success_rate} |\n"
# Detailed results
report += "\n## Detailed Results\n\n"
for i, test_case in enumerate(self.test_cases):
report += f"### Test Case {i+1}: {test_case[:50]}...\n\n"
for model, results in comparison_results.items():
response = results['responses'][i]
time_taken = results['response_times'][i]
if time_taken:
report += f"**{model}** ({time_taken:.2f}s):\n"
report += f"{response[:200]}...\n\n"
else:
report += f"**{model}**: {response}\n\n"
return report
# Example usage
test_cases = [
"Explain the concept of machine learning in simple terms",
"Write a Python function to calculate fibonacci numbers",
"Analyze the pros and cons of microservices architecture",
"Create a marketing strategy for a new AI product"
]
comparator = ModelComparator(test_cases)
# Compare models for code assistance
code_models = ["gpt-4", "gpt-4-turbo", "claude-3-sonnet"]
code_results = comparator.compare_models(code_models, persona="senior developer")
# Generate report
report = comparator.generate_report(code_results)
print(report)Best Practices for Model Selection
1. Start with Balanced Models
Begin with balanced models like gpt-4o or claude-3-sonnet and optimize from there:
# Good starting point for most applications
default_bot = (tb.ChatBot()
.model("gpt-3.5-turbo") # Reliable and widely available
.temperature(0.7) # Balanced creativity
.max_tokens(2000)) # Reasonable response length2. Use Task-Specific Optimization
Optimize models for specific use cases:
# Code review: Accuracy over speed
code_bot = (tb.ChatBot()
.model("gpt-4")
.temperature(0.3)
.max_tokens(3000))
# Customer support: Speed over complexity
support_bot = (tb.ChatBot()
.model("gpt-3.5-turbo")
.temperature(0.4)
.max_tokens(1000))3. Implement Fallback Strategies
Always have fallback models for reliability:
def create_resilient_bot(primary_model: str, fallback_model: str = "gpt-3.5-turbo"):
"""Create bot with fallback strategy."""
def chat_with_fallback(message: str, **kwargs):
try:
primary_bot = tb.ChatBot().model(primary_model)
return primary_bot.chat(message, **kwargs)
except Exception as e:
print(f"Primary model failed: {e}, falling back to {fallback_model}")
fallback_bot = tb.ChatBot().model(fallback_model)
return fallback_bot.chat(message, **kwargs)
return chat_with_fallback4. Monitor and Optimize
Continuously monitor model performance:
# Track model performance
performance_tracker = {
"gpt-4": {"total_requests": 0, "total_time": 0, "errors": 0},
"gpt-3.5-turbo": {"total_requests": 0, "total_time": 0, "errors": 0}
}
def track_model_performance(model: str, response_time: float, success: bool):
"""Track model performance metrics."""
performance_tracker[model]["total_requests"] += 1
performance_tracker[model]["total_time"] += response_time
if not success:
performance_tracker[model]["errors"] += 1Troubleshooting Common Issues
Rate Limiting
def handle_rate_limits(bot: tb.ChatBot, message: str, max_retries: int = 3):
"""Handle rate limiting with exponential backoff."""
for attempt in range(max_retries):
try:
return bot.chat(message)
except Exception as e:
if "rate limit" in str(e).lower() and attempt < max_retries - 1:
wait_time = 2 ** attempt # Exponential backoff
time.sleep(wait_time)
continue
else:
raise eContext Length Issues
def handle_context_length(message: str, conversation: tb.Conversation, max_tokens: int = 4000):
"""Handle context length by truncating conversation history."""
if not conversation:
return conversation
# Estimate tokens (rough approximation)
total_tokens = len(message.split()) + sum(len(msg.content.split()) for msg in conversation.get_messages())
if total_tokens > max_tokens:
# Keep only recent messages
messages = conversation.get_messages()
truncated_conv = tb.Conversation()
# Always keep system message if present
if messages and messages[0].role == "system":
truncated_conv.add_system_message(messages[0].content)
messages = messages[1:]
# Add recent messages until we approach the limit
recent_messages = []
current_tokens = len(message.split())
for msg in reversed(messages):
msg_tokens = len(msg.content.split())
if current_tokens + msg_tokens < max_tokens * 0.8: # Leave some buffer
recent_messages.insert(0, msg)
current_tokens += msg_tokens
else:
break
# Add messages to conversation
for msg in recent_messages:
if msg.role == "user":
truncated_conv.add_user_message(msg.content)
elif msg.role == "assistant":
truncated_conv.add_assistant_message(msg.content)
return truncated_conv
return conversationKey Takeaways
- Match models to tasks - Use complex models for complex tasks, simple models for simple tasks
- Consider the full cost - Factor in response time, API costs, and accuracy requirements
- Start balanced - Begin with models like GPT-4 Turbo or Claude-3 Sonnet
- Implement fallbacks - Always have backup models for reliability
- Monitor performance - Track metrics and optimize based on real usage
- Test thoroughly - Compare models on your specific use cases before production