Model Selection
Selecting the appropriate AI model is crucial for achieving optimal performance, cost-effectiveness, and user experience in your Talk Box applications. This guide covers the key considerations and trade-offs for different model types and providers.
Understanding Model Categories
Model Capabilities by Size
AI models fall into different capability tiers based on their parameter count and training:
import talk_box as tb
# Tier 1: Large, most capable models (best for complex reasoning)
= [
advanced_models "gpt-4", # OpenAI's most capable model
"gpt-4-turbo", # Faster, more cost-effective GPT-4
"claude-3-opus", # Anthropic's most capable model
"gemini-pro", # Google's advanced model
]
# Tier 2: Balanced models (good performance/cost ratio)
= [
balanced_models "gpt-3.5-turbo", # OpenAI's reliable balanced option (recommended default)
"claude-3-sonnet", # Anthropic's balanced model
"gemini-flash", # Google's fast, efficient model
]
# Tier 3: Fast, lightweight models (best for simple tasks)
= [
lightweight_models "gpt-3.5-turbo-16k", # Extended context version
"claude-3-haiku", # Anthropic's fastest model
]
Model Characteristics Comparison
Model | Reasoning | Speed | Cost | Context Length | Best Use Cases |
---|---|---|---|---|---|
GPT-4 | Excellent | Slow | High | 8K-128K | Complex analysis, research, creative writing |
GPT-4 Turbo | Excellent | Medium | Medium | 128K | Production apps needing GPT-4 quality |
GPT-4o | Excellent | Fast | Medium | 128K | Multimodal tasks, excellent default choice |
GPT-3.5 Turbo | Good | Fast | Low | 4K-16K | General chatbots, quick responses |
Claude 3 Opus | Excellent | Slow | High | 200K | Long documents, detailed analysis |
Claude 3 Sonnet | Very Good | Medium | Medium | 200K | Balanced apps, content creation |
Claude 3 Haiku | Good | Very Fast | Very Low | 200K | High-volume, simple interactions |
Gemini Pro | Very Good | Medium | Medium | 32K | Multimodal tasks, Google ecosystem |
Model Selection Framework
1. Define Your Requirements
Start by clearly defining your application’s needs:
class ModelRequirements:
"""Framework for defining model selection criteria."""
def __init__(self):
self.task_complexity = None # simple, moderate, complex
self.response_time_requirement = None # <1s, <3s, <10s, flexible
self.cost_sensitivity = None # low, medium, high
self.context_length_needed = None # <4K, <16K, <128K, >128K
self.accuracy_requirement = None # acceptable, good, excellent
self.volume_expectation = None # <100/day, <1K/day, >1K/day
def recommend_models(self):
"""Recommend models based on requirements."""
= []
recommendations
if self.task_complexity == "complex":
if self.cost_sensitivity == "low":
"gpt-4", "claude-3-opus"])
recommendations.extend([else:
"gpt-4-turbo", "claude-3-sonnet"])
recommendations.extend([
elif self.task_complexity == "moderate":
if self.response_time_requirement == "<1s":
"gpt-3.5-turbo", "claude-3-haiku"])
recommendations.extend([else:
"gpt-4-turbo", "claude-3-sonnet"])
recommendations.extend([
elif self.task_complexity == "simple":
"gpt-3.5-turbo", "claude-3-haiku"])
recommendations.extend([
return recommendations
# Example usage
= ModelRequirements()
requirements = "moderate"
requirements.task_complexity = "<3s"
requirements.response_time_requirement = "medium"
requirements.cost_sensitivity = "<16K"
requirements.context_length_needed
= requirements.recommend_models()
recommended_models print(f"Recommended models: {recommended_models}")
2. Task-Specific Model Selection
Different tasks benefit from different model strengths:
def select_model_for_task(task_type: str) -> str:
"""Select optimal model based on task type."""
= {
task_model_map # Code-related tasks
"code_review": "gpt-4", # Needs deep reasoning
"code_generation": "gpt-4-turbo", # Good balance of quality/speed
"syntax_checking": "gpt-3.5-turbo", # Simple pattern matching
# Analysis tasks
"document_analysis": "claude-3-opus", # Excellent with long text
"data_interpretation": "gpt-4", # Strong analytical reasoning
"summarization": "claude-3-sonnet", # Good balance for summaries
# Creative tasks
"creative_writing": "gpt-4", # Best creative capabilities
"content_editing": "claude-3-sonnet", # Good language skills
"translation": "gpt-4-turbo", # Strong multilingual
# Conversational tasks
"customer_support": "gpt-3.5-turbo", # Fast, cost-effective
"general_chat": "claude-3-haiku", # Very responsive
"educational_tutor": "gpt-4-turbo", # Needs good explanations
# Technical tasks
"api_documentation": "gpt-4", # Needs technical accuracy
"troubleshooting": "claude-3-sonnet", # Good reasoning, fast
"configuration": "gpt-3.5-turbo", # Straightforward tasks
}
return task_model_map.get(task_type, "gpt-3.5-turbo") # Default fallback
# Example specialized bots
= (tb.ChatBot()
code_reviewer "code_review"))
.model(select_model_for_task("senior developer", "thorough code analysis")
.persona(0.3)) # Lower creativity for accuracy
.temperature(
= (tb.ChatBot()
content_creator "creative_writing"))
.model(select_model_for_task("creative writer", "engaging content creation")
.persona(0.8)) # Higher creativity
.temperature(
= (tb.ChatBot()
support_bot "customer_support"))
.model(select_model_for_task("helpful support agent", "quick problem resolution")
.persona(0.4)) # Balanced and consistent .temperature(
3. Performance vs Cost Optimization
import time
from dataclasses import dataclass
from typing import List, Dict
@dataclass
class ModelPerformanceMetrics:
"""Track model performance metrics."""
str
model_name: float
avg_response_time: float
cost_per_1k_tokens: float # 0-1 scale
accuracy_score: int
context_limit:
class ModelOptimizer:
"""Optimize model selection based on performance and cost."""
def __init__(self):
# Approximate metrics (update with real data)
self.model_metrics = {
"gpt-4": ModelPerformanceMetrics(
="gpt-4",
model_name=8.0,
avg_response_time=0.03,
cost_per_1k_tokens=0.95,
accuracy_score=8192
context_limit
),"gpt-4-turbo": ModelPerformanceMetrics(
="gpt-4-turbo",
model_name=4.0,
avg_response_time=0.01,
cost_per_1k_tokens=0.93,
accuracy_score=128000
context_limit
),"gpt-4o": ModelPerformanceMetrics(
="gpt-4o",
model_name=3.0,
avg_response_time=0.005,
cost_per_1k_tokens=0.94,
accuracy_score=128000
context_limit
),"gpt-3.5-turbo": ModelPerformanceMetrics(
="gpt-3.5-turbo",
model_name=1.5,
avg_response_time=0.002,
cost_per_1k_tokens=0.85,
accuracy_score=4096
context_limit
),"claude-3-opus": ModelPerformanceMetrics(
="claude-3-opus",
model_name=10.0,
avg_response_time=0.015,
cost_per_1k_tokens=0.96,
accuracy_score=200000
context_limit
),"claude-3-sonnet": ModelPerformanceMetrics(
="claude-3-sonnet",
model_name=3.0,
avg_response_time=0.003,
cost_per_1k_tokens=0.90,
accuracy_score=200000
context_limit
),"claude-3-haiku": ModelPerformanceMetrics(
="claude-3-haiku",
model_name=0.8,
avg_response_time=0.00025,
cost_per_1k_tokens=0.82,
accuracy_score=200000
context_limit
)
}
def calculate_cost_effectiveness(self,
str,
model_name: int,
expected_tokens_per_request: int) -> Dict[str, float]:
requests_per_day: """Calculate cost-effectiveness metrics."""
= self.model_metrics[model_name]
metrics
# Daily costs
= (expected_tokens_per_request * requests_per_day *
daily_token_cost / 1000)
metrics.cost_per_1k_tokens
# Monthly costs
= daily_token_cost * 30
monthly_cost
# Effectiveness score (accuracy per dollar)
= metrics.accuracy_score / daily_token_cost if daily_token_cost > 0 else 0
effectiveness
return {
"daily_cost": daily_token_cost,
"monthly_cost": monthly_cost,
"cost_effectiveness": effectiveness,
"avg_response_time": metrics.avg_response_time,
"accuracy_score": metrics.accuracy_score
}
def recommend_best_model(self,
int,
expected_tokens: int,
daily_requests: float = None,
max_monthly_budget: float = None,
max_response_time: float = None) -> List[str]:
min_accuracy: """Recommend models based on constraints."""
= []
recommendations
for model_name in self.model_metrics.keys():
= self.calculate_cost_effectiveness(
metrics
model_name, expected_tokens, daily_requests
)
# Apply constraints
if max_monthly_budget and metrics["monthly_cost"] > max_monthly_budget:
continue
if max_response_time and metrics["avg_response_time"] > max_response_time:
continue
if min_accuracy and metrics["accuracy_score"] < min_accuracy:
continue
recommendations.append({"model": model_name,
"metrics": metrics
})
# Sort by cost-effectiveness
=lambda x: x["metrics"]["cost_effectiveness"], reverse=True)
recommendations.sort(key
return [rec["model"] for rec in recommendations]
# Example usage
= ModelOptimizer()
optimizer
# Scenario: Customer support chatbot
= optimizer.recommend_best_model(
support_recommendations =500, # Average tokens per interaction
expected_tokens=1000, # 1000 support requests per day
daily_requests=200, # $200/month budget
max_monthly_budget=3.0, # Must respond within 3 seconds
max_response_time=0.80 # Minimum 80% accuracy
min_accuracy
)
print(f"Best models for customer support: {support_recommendations}")
# Scenario: Complex document analysis
= optimizer.recommend_best_model(
analysis_recommendations =2000, # Longer analysis tasks
expected_tokens=50, # Lower volume
daily_requests=500, # Higher budget for quality
max_monthly_budget=15.0, # Can wait longer for quality
max_response_time=0.90 # Need high accuracy
min_accuracy
)
print(f"Best models for document analysis: {analysis_recommendations}")
Provider-Specific Considerations
OpenAI Models
def configure_openai_model(use_case: str) -> tb.ChatBot:
"""Configure OpenAI models for different use cases."""
if use_case == "production_chatbot":
return (tb.ChatBot()
"gpt-4-turbo") # Best balance for production
.model(0.7) # Balanced creativity
.temperature(1000)) # Reasonable response length
.max_tokens(
elif use_case == "creative_assistant":
return (tb.ChatBot()
"gpt-4") # Best creative capabilities
.model(0.9) # High creativity
.temperature(2000)) # Longer creative responses
.max_tokens(
elif use_case == "high_volume_support":
return (tb.ChatBot()
"gpt-3.5-turbo") # Cost-effective
.model(0.3) # Consistent responses
.temperature(500)) # Concise answers
.max_tokens(
elif use_case == "complex_analysis":
return (tb.ChatBot()
"gpt-4") # Best reasoning
.model(0.2) # Focused and analytical
.temperature(3000)) # Detailed analysis
.max_tokens(
# Usage examples
= configure_openai_model("creative_assistant")
creative_bot = configure_openai_model("high_volume_support") support_bot
Anthropic Claude Models
def configure_claude_model(document_length: str, priority: str) -> tb.ChatBot:
"""Configure Claude models based on document length and priority."""
if document_length == "long" and priority == "quality":
return (tb.ChatBot()
"claude-3-opus") # Best for long documents
.model(0.4) # Balanced
.temperature(4000)) # Comprehensive responses
.max_tokens(
elif document_length == "medium" and priority == "speed":
return (tb.ChatBot()
"claude-3-sonnet") # Good balance
.model(0.5)
.temperature(2000))
.max_tokens(
elif priority == "cost":
return (tb.ChatBot()
"claude-3-haiku") # Most cost-effective
.model(0.6)
.temperature(1000))
.max_tokens(
else:
return (tb.ChatBot()
"claude-3-sonnet") # Default balanced choice
.model(0.5)
.temperature(2000))
.max_tokens(
# Document analysis examples
= configure_claude_model("long", "quality")
legal_doc_bot = configure_claude_model("short", "speed")
email_bot = configure_claude_model("medium", "cost") bulk_processing_bot
Google Gemini Models
def configure_gemini_model(task_type: str) -> tb.ChatBot:
"""Configure Gemini models for different task types."""
if task_type == "multimodal":
return (tb.ChatBot()
"gemini-pro-vision") # For image + text
.model(0.6)
.temperature(2000))
.max_tokens(
elif task_type == "rapid_response":
return (tb.ChatBot()
"gemini-flash") # Fastest option
.model(0.4)
.temperature(1000))
.max_tokens(
else:
return (tb.ChatBot()
"gemini-pro") # General purpose
.model(0.7)
.temperature(1500))
.max_tokens(
# Task-specific bots
= configure_gemini_model("multimodal")
image_analyzer = configure_gemini_model("rapid_response") quick_qa_bot
Dynamic Model Selection
Context-Aware Model Switching
class AdaptiveModelSelector:
"""Dynamically select models based on context and performance."""
def __init__(self):
self.performance_history = {}
self.fallback_models = ["gpt-3.5-turbo", "claude-3-haiku"]
def select_model(self,
int,
message_length: float,
complexity_score: float,
response_time_requirement: = None) -> str:
conversation_history: tb.Conversation """Select optimal model based on context."""
# Analyze conversation complexity
if conversation_history:
= self._analyze_conversation_complexity(conversation_history)
context_complexity else:
= 0.5 # Default
context_complexity
# Combine factors
= (complexity_score + context_complexity) / 2
overall_complexity
# Model selection logic
if overall_complexity > 0.8 and response_time_requirement > 5.0:
return "gpt-4" # High complexity, can wait
elif overall_complexity > 0.6 and message_length > 1000:
return "claude-3-opus" # Long text analysis
elif response_time_requirement < 2.0:
return "gpt-3.5-turbo" # Speed priority
elif overall_complexity > 0.7:
return "gpt-4-turbo" # Balanced quality/speed
else:
return "claude-3-sonnet" # Default balanced choice
def _analyze_conversation_complexity(self, conversation: tb.Conversation) -> float:
"""Analyze conversation complexity (simplified)."""
= conversation.get_messages()
messages
# Factors that increase complexity
= []
factors
# Length factor
= sum(len(msg.content) for msg in messages) / len(messages)
avg_length = min(avg_length / 500, 1.0) # Normalize to 0-1
length_factor
factors.append(length_factor)
# Technical terms factor (simplified)
= ["algorithm", "optimize", "analyze", "complex", "detailed"]
technical_terms = " ".join(msg.content for msg in messages).lower()
total_text = sum(1 for term in technical_terms if term in total_text) / len(technical_terms)
tech_factor
factors.append(tech_factor)
# Question complexity factor
= [msg for msg in messages if "?" in msg.content]
questions = min(len(questions) / len(messages), 1.0)
question_factor
factors.append(question_factor)
return sum(factors) / len(factors)
class SmartChatBot:
"""ChatBot with adaptive model selection."""
def __init__(self):
self.model_selector = AdaptiveModelSelector()
self.current_model = None
self.current_bot = None
def chat(self,
str,
message: = None,
conversation: tb.Conversation float = 5.0) -> tb.Conversation:
response_time_requirement: """Chat with adaptive model selection."""
# Analyze message complexity
= self._estimate_complexity(message)
complexity_score
# Select optimal model
= self.model_selector.select_model(
selected_model =len(message),
message_length=complexity_score,
complexity_score=response_time_requirement,
response_time_requirement=conversation
conversation_history
)
# Create or update bot if model changed
if selected_model != self.current_model:
self.current_model = selected_model
self.current_bot = (tb.ChatBot()
.model(selected_model)0.7)
.temperature(2000))
.max_tokens(
print(f"Switched to model: {selected_model}")
# Make the chat call
try:
return self.current_bot.chat(message, conversation=conversation)
except Exception as e:
# Fallback to simpler model
print(f"Error with {selected_model}, falling back...")
= (tb.ChatBot()
fallback_bot "gpt-3.5-turbo")
.model(0.7)
.temperature(2000))
.max_tokens(
return fallback_bot.chat(message, conversation=conversation)
def _estimate_complexity(self, message: str) -> float:
"""Estimate message complexity (simplified)."""
= []
factors
# Length factor
= min(len(message) / 1000, 1.0)
length_factor
factors.append(length_factor)
# Technical terms
= [
technical_indicators "analyze", "optimize", "algorithm", "architecture", "implement",
"strategy", "complex", "detailed", "comprehensive", "evaluate"
]= sum(1 for term in technical_indicators if term.lower() in message.lower())
tech_count = min(tech_count / 5, 1.0)
tech_factor
factors.append(tech_factor)
# Question complexity
if "how" in message.lower() or "why" in message.lower():
0.7)
factors.append(elif "what" in message.lower():
0.4)
factors.append(
return sum(factors) / len(factors) if factors else 0.3
# Usage example
= SmartChatBot()
smart_bot
# Simple question - will use fast model
= smart_bot.chat(
simple_response "What is Python?",
=1.0
response_time_requirement
)
# Complex analysis - will use powerful model
= smart_bot.chat(
complex_response "Analyze the architectural patterns in this large codebase and recommend optimization strategies for scalability and maintainability",
=10.0
response_time_requirement )
Testing and Evaluation
Model Performance Comparison
import time
from typing import List, Dict, Any
class ModelComparator:
"""Compare performance across different models."""
def __init__(self, test_cases: List[str]):
self.test_cases = test_cases
self.results = {}
def evaluate_model(self, model_name: str, persona: str = None) -> Dict[str, Any]:
"""Evaluate a single model across test cases."""
= tb.ChatBot().model(model_name)
bot if persona:
= bot.persona(persona)
bot
= {
results "model": model_name,
"response_times": [],
"response_lengths": [],
"responses": []
}
for test_case in self.test_cases:
= time.time()
start_time
try:
= bot.chat(test_case)
response = time.time() - start_time
response_time = response.get_last_message().content
response_content
"response_times"].append(response_time)
results["response_lengths"].append(len(response_content))
results["responses"].append(response_content)
results[
except Exception as e:
"response_times"].append(None)
results["response_lengths"].append(None)
results["responses"].append(f"ERROR: {str(e)}")
results[
# Calculate summary statistics
= [t for t in results["response_times"] if t is not None]
valid_times = [l for l in results["response_lengths"] if l is not None]
valid_lengths
"avg_response_time"] = sum(valid_times) / len(valid_times) if valid_times else None
results["avg_response_length"] = sum(valid_lengths) / len(valid_lengths) if valid_lengths else None
results["success_rate"] = len(valid_times) / len(self.test_cases)
results[
return results
def compare_models(self, models: List[str], persona: str = None) -> Dict[str, Any]:
"""Compare multiple models."""
= {}
comparison_results
for model in models:
print(f"Evaluating {model}...")
= self.evaluate_model(model, persona)
comparison_results[model]
return comparison_results
def generate_report(self, comparison_results: Dict[str, Any]) -> str:
"""Generate a comparison report."""
= "# Model Comparison Report\n\n"
report
# Summary table
+= "## Summary\n\n"
report += "| Model | Avg Response Time | Avg Length | Success Rate |\n"
report += "|-------|------------------|------------|---------------|\n"
report
for model, results in comparison_results.items():
= f"{results['avg_response_time']:.2f}s" if results['avg_response_time'] else "N/A"
avg_time = f"{results['avg_response_length']:.0f}" if results['avg_response_length'] else "N/A"
avg_length = f"{results['success_rate']*100:.1f}%"
success_rate
+= f"| {model} | {avg_time} | {avg_length} | {success_rate} |\n"
report
# Detailed results
+= "\n## Detailed Results\n\n"
report
for i, test_case in enumerate(self.test_cases):
+= f"### Test Case {i+1}: {test_case[:50]}...\n\n"
report
for model, results in comparison_results.items():
= results['responses'][i]
response = results['response_times'][i]
time_taken
if time_taken:
+= f"**{model}** ({time_taken:.2f}s):\n"
report += f"{response[:200]}...\n\n"
report else:
+= f"**{model}**: {response}\n\n"
report
return report
# Example usage
= [
test_cases "Explain the concept of machine learning in simple terms",
"Write a Python function to calculate fibonacci numbers",
"Analyze the pros and cons of microservices architecture",
"Create a marketing strategy for a new AI product"
]
= ModelComparator(test_cases)
comparator
# Compare models for code assistance
= ["gpt-4", "gpt-4-turbo", "claude-3-sonnet"]
code_models = comparator.compare_models(code_models, persona="senior developer")
code_results
# Generate report
= comparator.generate_report(code_results)
report print(report)
Best Practices for Model Selection
1. Start with Balanced Models
Begin with balanced models like gpt-4o
or claude-3-sonnet
and optimize from there:
# Good starting point for most applications
= (tb.ChatBot()
default_bot "gpt-3.5-turbo") # Reliable and widely available
.model(0.7) # Balanced creativity
.temperature(2000)) # Reasonable response length .max_tokens(
2. Use Task-Specific Optimization
Optimize models for specific use cases:
# Code review: Accuracy over speed
= (tb.ChatBot()
code_bot "gpt-4")
.model(0.3)
.temperature(3000))
.max_tokens(
# Customer support: Speed over complexity
= (tb.ChatBot()
support_bot "gpt-3.5-turbo")
.model(0.4)
.temperature(1000)) .max_tokens(
3. Implement Fallback Strategies
Always have fallback models for reliability:
def create_resilient_bot(primary_model: str, fallback_model: str = "gpt-3.5-turbo"):
"""Create bot with fallback strategy."""
def chat_with_fallback(message: str, **kwargs):
try:
= tb.ChatBot().model(primary_model)
primary_bot return primary_bot.chat(message, **kwargs)
except Exception as e:
print(f"Primary model failed: {e}, falling back to {fallback_model}")
= tb.ChatBot().model(fallback_model)
fallback_bot return fallback_bot.chat(message, **kwargs)
return chat_with_fallback
4. Monitor and Optimize
Continuously monitor model performance:
# Track model performance
= {
performance_tracker "gpt-4": {"total_requests": 0, "total_time": 0, "errors": 0},
"gpt-3.5-turbo": {"total_requests": 0, "total_time": 0, "errors": 0}
}
def track_model_performance(model: str, response_time: float, success: bool):
"""Track model performance metrics."""
"total_requests"] += 1
performance_tracker[model]["total_time"] += response_time
performance_tracker[model][
if not success:
"errors"] += 1 performance_tracker[model][
Troubleshooting Common Issues
Rate Limiting
def handle_rate_limits(bot: tb.ChatBot, message: str, max_retries: int = 3):
"""Handle rate limiting with exponential backoff."""
for attempt in range(max_retries):
try:
return bot.chat(message)
except Exception as e:
if "rate limit" in str(e).lower() and attempt < max_retries - 1:
= 2 ** attempt # Exponential backoff
wait_time
time.sleep(wait_time)continue
else:
raise e
Context Length Issues
def handle_context_length(message: str, conversation: tb.Conversation, max_tokens: int = 4000):
"""Handle context length by truncating conversation history."""
if not conversation:
return conversation
# Estimate tokens (rough approximation)
= len(message.split()) + sum(len(msg.content.split()) for msg in conversation.get_messages())
total_tokens
if total_tokens > max_tokens:
# Keep only recent messages
= conversation.get_messages()
messages = tb.Conversation()
truncated_conv
# Always keep system message if present
if messages and messages[0].role == "system":
0].content)
truncated_conv.add_system_message(messages[= messages[1:]
messages
# Add recent messages until we approach the limit
= []
recent_messages = len(message.split())
current_tokens
for msg in reversed(messages):
= len(msg.content.split())
msg_tokens if current_tokens + msg_tokens < max_tokens * 0.8: # Leave some buffer
0, msg)
recent_messages.insert(+= msg_tokens
current_tokens else:
break
# Add messages to conversation
for msg in recent_messages:
if msg.role == "user":
truncated_conv.add_user_message(msg.content)elif msg.role == "assistant":
truncated_conv.add_assistant_message(msg.content)
return truncated_conv
return conversation
Key Takeaways
- Match models to tasks - Use complex models for complex tasks, simple models for simple tasks
- Consider the full cost - Factor in response time, API costs, and accuracy requirements
- Start balanced - Begin with models like GPT-4 Turbo or Claude-3 Sonnet
- Implement fallbacks - Always have backup models for reliability
- Monitor performance - Track metrics and optimize based on real usage
- Test thoroughly - Compare models on your specific use cases before production