With yaml_read_agent() we can read a pointblank YAML file that describes a validation plan to be carried out by an agent (typically generated by the yaml_write() function. What's returned is a new agent with that validation plan, ready to interrogate the target table at will (using the table-prep formula that is set with the read_fn argument). The agent can be given more validation steps if needed before using interrogate() or taking part in any other agent ops (e.g., writing to disk with outputs intact via x_write_disk() or again to pointblank YAML with yaml_write()).

To get a picture of how yaml_read_agent() is interpreting the validation plan specified in the pointblank YAML, we can use the yaml_agent_show_exprs() function. That function shows us (in the console) the pointblank expressions for generating the described validation plan.

yaml_read_agent(filename, path = NULL)



The name of the YAML file that contains fields related to an agent.


An optional path to the YAML file (combined with filename).

Function ID


See also


if (interactive()) { # Let's go through the process of # developing an agent with a validation # plan (to be used for the data quality # analysis of the `small_table` dataset), # and then offloading that validation # plan to a pointblank YAML file; this # will be read in with `yaml_read_agent()` # Creating an `action_levels` object is a # common workflow step when creating a # pointblank agent; we designate failure # thresholds to the `warn`, `stop`, and # `notify` states using `action_levels()` al <- action_levels( warn_at = 0.10, stop_at = 0.25, notify_at = 0.35 ) # Now create a pointblank `agent` object # and give it the `al` object (which # serves as a default for all validation # steps which can be overridden); the # data will be referenced in a `read_fn` # (a requirement for writing to YAML) agent <- create_agent( read_fn = ~small_table, label = "A simple example with the `small_table`.", actions = al ) # Then, as with any `agent` object, we # can add steps to the validation plan by # using as many validation functions as we # want agent <- agent %>% col_exists(vars(date, date_time)) %>% col_vals_regex( vars(b), regex = "[0-9]-[a-z]{3}-[0-9]{3}" ) %>% rows_distinct() %>% col_vals_gt(vars(d), value = 100) %>% col_vals_lte(vars(c), value = 5) # The agent can be written to a pointblank # YAML file with `yaml_write()` yaml_write( agent = agent, filename = "agent-small_table.yml" ) # The 'agent-small_table.yml' file is # available in the package through # `system.file()` yml_file <- system.file( "yaml", "agent-small_table.yml", package = "pointblank" ) # We can view the YAML file in the console # with the `yaml_agent_string()` function yaml_agent_string(filename = yml_file) # The YAML can also be printed in the console # by supplying the agent as the input yaml_agent_string(agent = agent) # At a later time, the YAML file can # be read into a new agent with the # `yaml_read_agent()` function agent <- yaml_read_agent(filename = yml_file) class(agent) # We can interrogate the data (which # is accessible through the `read_fn`) # with `interrogate()` and get an # agent with intel, or, we can # interrogate directly from the YAML # file with `yaml_agent_interrogate()` agent <- yaml_agent_interrogate( filename = yml_file ) class(agent) }