Validate.col_exists

Validate.col_exists(columns, thresholds=None, active=True)

Validate whether one or more columns exist in the table.

The col_exists() method checks whether one or more columns exist in the target table. The only requirement is specification of the column names. Each validation step or expectation will operate over a single test unit, which is whether the column exists or not.

Parameters

columns : str | list[str]

A single column or a list of columns to validate. If multiple columns are supplied, there will be a separate validation step generated for each column.

thresholds : int | float | bool | tuple | dict | Thresholds = None

Failure threshold levels so that the validation step can react accordingly when exceeding the set levels for different states (warn, stop, and notify). This can be created simply as an integer or float denoting the absolute number or fraction of failing test units for the ‘warn’ level. Otherwise, you can use a tuple of 1-3 values, a dictionary of 1-3 entries, or a Thresholds object.

active : bool = True

A boolean value indicating whether the validation step should be active. Using False will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged).

Returns

: Validate

The Validate object with the added validation step.

Examples

For the examples here, we’ll use a simple Polars DataFrame with a string columns (a) and a numeric column (b). The table is shown below:

import polars as pl

tbl = pl.DataFrame(
    {
        "a": ["apple", "banana", "cherry", "date"],
        "b": [1, 6, 3, 5],
    }
)

tbl
shape: (4, 2)
ab
stri64
"apple"1
"banana"6
"cherry"3
"date"5

Let’s validate that the columns a and b actually exist in the table. We’ll determine if this validation had any failing test units (each validation will have a single test unit).

import pointblank as pb

validation = (
    pb.Validate(data=tbl)
    .col_exists(columns=["a", "b"])
    .interrogate()
)

validation
Pointblank Validation
2024-12-20|15:08:33
Polars
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W S N EXT
#4CA64C 1
col_exists
col_exists()
a 1 1
1.00
0
0.00
#4CA64C 2
col_exists
col_exists()
b 1 1
1.00
0
0.00
2024-12-20 15:08:33 UTC< 1 s2024-12-20 15:08:33 UTC

Printing the validation object shows the validation table in an HTML viewing environment. The validation table shows two entries (one check per column) generated by the col_exists() validation step. Both steps passed since both columns provided in columns= are present in the table.

Now, let’s check for the existence of a different set of columns.

validation = (
    pb.Validate(data=tbl)
    .col_exists(columns=["b", "c"])
    .interrogate()
)

validation
Pointblank Validation
2024-12-20|15:08:33
Polars
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W S N EXT
#4CA64C 1
col_exists
col_exists()
b 1 1
1.00
0
0.00
#4CA64C66 2
col_exists
col_exists()
c 1 0
0.00
1
1.00
2024-12-20 15:08:33 UTC< 1 s2024-12-20 15:08:33 UTC

The validation table reports one passing validation step (the check for column b) and one failing validation step (the check for column c, which doesn’t exist).