Validate.col_count_match

Validate.col_count_match(
    count,
    inverse=False,
    pre=None,
    thresholds=None,
    active=True,
)

Validate whether the column count of the table matches a specified count.

The col_count_match() method checks whether the column count of the target table matches a specified count. This validation will operate over a single test unit, which is whether the column count matches the specified count.

We also have the option to invert the validation step by setting inverse=True. This will make the expectation that column row count of the target table does not match the specified count.

Parameters

count : int | FrameT | Any

The expected column count of the table. This can be an integer value, a Polars or Pandas DataFrame object, or an Ibis backend table. If a DataFrame/table is provided, the column count of that object will be used as the expected count.

inverse : bool = False

Should the validation step be inverted? If True, then the expectation is that the column count of the target table should not match the specified count= value.

pre : Callable | None = None

A pre-processing function or lambda to apply to the data table for the validation step.

thresholds : int | float | bool | tuple | dict | Thresholds = None

Failure threshold levels so that the validation step can react accordingly when exceeding the set levels for different states (warn, stop, and notify). This can be created simply as an integer or float denoting the absolute number or fraction of failing test units for the ‘warn’ level. Otherwise, you can use a tuple of 1-3 values, a dictionary of 1-3 entries, or a Thresholds object.

active : bool = True

A boolean value indicating whether the validation step should be active. Using False will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged).

Returns

: Validate

The Validate object with the added validation step.

Examples

For the examples here, we’ll use the built in dataset "game_revenue". The table can be obtained by calling load_dataset("game_revenue").

import pointblank as pb

game_revenue = pb.load_dataset("game_revenue")

pb.preview(game_revenue)
PolarsRows2000Columns11
player_id
String
session_id
String
session_start
Datetime
time
Datetime
item_type
String
item_name
String
item_revenue
Float64
session_duration
Float64
start_day
Date
acquisition
String
country
String
1 ECPANOIXLZHF896 ECPANOIXLZHF896-eol2j8bs 2015-01-01 01:31:03+00:00 2015-01-01 01:31:27+00:00 iap offer2 8.99 16.3 2015-01-01 google Germany
2 ECPANOIXLZHF896 ECPANOIXLZHF896-eol2j8bs 2015-01-01 01:31:03+00:00 2015-01-01 01:36:57+00:00 iap gems3 22.49 16.3 2015-01-01 google Germany
3 ECPANOIXLZHF896 ECPANOIXLZHF896-eol2j8bs 2015-01-01 01:31:03+00:00 2015-01-01 01:37:45+00:00 iap gold7 107.99 16.3 2015-01-01 google Germany
4 ECPANOIXLZHF896 ECPANOIXLZHF896-eol2j8bs 2015-01-01 01:31:03+00:00 2015-01-01 01:42:33+00:00 ad ad_20sec 0.76 16.3 2015-01-01 google Germany
5 ECPANOIXLZHF896 ECPANOIXLZHF896-hdu9jkls 2015-01-01 11:50:02+00:00 2015-01-01 11:55:20+00:00 ad ad_5sec 0.03 35.2 2015-01-01 google Germany
1996 NAOJRDMCSEBI281 NAOJRDMCSEBI281-j2vs9ilp 2015-01-21 01:57:50+00:00 2015-01-21 02:02:50+00:00 ad ad_survey 1.332 25.8 2015-01-11 organic Norway
1997 NAOJRDMCSEBI281 NAOJRDMCSEBI281-j2vs9ilp 2015-01-21 01:57:50+00:00 2015-01-21 02:22:14+00:00 ad ad_survey 1.35 25.8 2015-01-11 organic Norway
1998 RMOSWHJGELCI675 RMOSWHJGELCI675-vbhcsmtr 2015-01-21 02:39:48+00:00 2015-01-21 02:40:00+00:00 ad ad_5sec 0.03 8.4 2015-01-10 other_campaign France
1999 RMOSWHJGELCI675 RMOSWHJGELCI675-vbhcsmtr 2015-01-21 02:39:48+00:00 2015-01-21 02:47:12+00:00 iap offer5 26.09 8.4 2015-01-10 other_campaign France
2000 GJCXNTWEBIPQ369 GJCXNTWEBIPQ369-9elq67md 2015-01-21 03:59:23+00:00 2015-01-21 04:06:29+00:00 ad ad_5sec 0.12 18.5 2015-01-14 organic United States

Let’s validate that the number of columns in the table matches a fixed value. In this case, we will use the value 11 as the expected column count.

validation = (
    pb.Validate(data=game_revenue)
    .col_count_match(count=11)
    .interrogate()
)

validation
STEP COLUMNS VALUES TBL EVAL UNITS PASS FAIL W S N EXT
#4CA64C 1
col_count_match
col_count_match()
11 1 1
1.00
0
0.00

The validation table shows that the expectation value of 11 matches the actual count of columns in the target table. So, the single test unit passed.