Pointblank Validation | |||||||||||||
2025-01-20|18:17:55 Polars |
|||||||||||||
STEP | COLUMNS | VALUES | TBL | EVAL | UNITS | PASS | FAIL | W | S | N | EXT | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#4CA64C | 1 |
|
✓ | 2000 | 2000 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 2 |
|
✓ | 2000 | 2000 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 3 |
|
✓ | 2000 | 2000 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 4 |
|
✓ | 2000 | 2000 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 5 |
|
✓ | 2000 | 2000 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 6 |
|
✓ | 2000 | 2000 1.00 |
0 0.00 |
— | — | — | — | |||
2025-01-20 18:17:55 UTC< 1 s2025-01-20 18:17:55 UTC |
Column Selector Functions: Easily Pick Columns
Use column selector functions in the columns=
argument to conveniently choose columns.
import pointblank as pb
= (
validation
pb.Validate(=pb.load_dataset(dataset="game_revenue", tbl_type="polars")
data
)
.col_vals_ge(=pb.matches("rev|dur"), # check values in columns having 'rev' or 'dur' in name
columns=0
value
)
.col_vals_regex(=pb.ends_with("_id"), # check values in columns with names ending in '_id'
columns=r"^[A-Z]{12}\d{3}"
pattern
)
.col_vals_not_null(=pb.last_n(2) # check that the last two columns don't have Null values
columns
)
.interrogate()
)
validation
Preview of Input Table
PolarsRows2000Columns11 |
|||||||||||