Custom Expression for Checking Column Values
A column expression can be used to check column values. Just use col_vals_expr()
for this.
Pointblank Validation |
2025-01-20|18:18:19Pandas |
|
|
STEP |
COLUMNS |
VALUES |
TBL |
EVAL |
UNITS |
PASS |
FAIL |
W |
S |
N |
EXT |
#4CA64C |
1 |
col_vals_expr()
|
— |
COLUMN EXPR |
|
✓ |
13 |
13 1.00 |
0 0.00 |
— |
— |
— |
— |
2025-01-20 18:18:19 UTC< 1 s2025-01-20 18:18:19 UTC |
import pointblank as pb
validation = (
pb.Validate(
data=pb.load_dataset(dataset="small_table", tbl_type="pandas")
)
.col_vals_expr(expr=lambda df: (df["d"] % 1 != 0) & (df["a"] < 10)) # Pandas column expr
.interrogate()
)
validation
Preview of Input Table
|
|
|
|
|
|
|
|
|
|
1 |
2016-01-04 11:00:00 |
2016-01-04 00:00:00 |
2 |
1-bcd-345 |
3.0 |
3423.29 |
True |
high |
2 |
2016-01-04 00:32:00 |
2016-01-04 00:00:00 |
3 |
5-egh-163 |
8.0 |
9999.99 |
True |
low |
3 |
2016-01-05 13:32:00 |
2016-01-05 00:00:00 |
6 |
8-kdg-938 |
3.0 |
2343.23 |
True |
high |
4 |
2016-01-06 17:23:00 |
2016-01-06 00:00:00 |
2 |
5-jdo-903 |
NA |
3892.4 |
False |
mid |
5 |
2016-01-09 12:36:00 |
2016-01-09 00:00:00 |
8 |
3-ldm-038 |
7.0 |
283.94 |
True |
low |
6 |
2016-01-11 06:15:00 |
2016-01-11 00:00:00 |
4 |
2-dhe-923 |
4.0 |
3291.03 |
True |
mid |
7 |
2016-01-15 18:46:00 |
2016-01-15 00:00:00 |
7 |
1-knw-093 |
3.0 |
843.34 |
True |
high |
8 |
2016-01-17 11:27:00 |
2016-01-17 00:00:00 |
4 |
5-boe-639 |
2.0 |
1035.64 |
False |
low |
9 |
2016-01-20 04:30:00 |
2016-01-20 00:00:00 |
3 |
5-bce-642 |
9.0 |
837.93 |
False |
high |
10 |
2016-01-20 04:30:00 |
2016-01-20 00:00:00 |
3 |
5-bce-642 |
9.0 |
837.93 |
False |
high |
11 |
2016-01-26 20:07:00 |
2016-01-26 00:00:00 |
4 |
2-dmx-010 |
7.0 |
833.98 |
True |
low |
12 |
2016-01-28 02:51:00 |
2016-01-28 00:00:00 |
2 |
7-dmx-010 |
8.0 |
108.34 |
False |
low |
13 |
2016-01-30 11:23:00 |
2016-01-30 00:00:00 |
1 |
3-dka-303 |
NA |
2230.09 |
True |
high |