Pointblank Validation | |||||||||||||
2025-01-20|18:17:49 DuckDB |
|||||||||||||
STEP | COLUMNS | VALUES | TBL | EVAL | UNITS | PASS | FAIL | W | S | N | EXT | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#4CA64C | 1 |
|
✓ | 1 | 1 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 2 |
|
✓ | 1 | 1 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 3 |
|
✓ | 1 | 1 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 4 |
|
✓ | 1 | 1 1.00 |
0 0.00 |
— | — | — | — | |||
2025-01-20 18:17:49 UTC< 1 s2025-01-20 18:17:49 UTC |
Verifying Row and Column Counts
Check the dimensions of the table with the *_count_match()
validation methods.
import pointblank as pb
= (
validation
pb.Validate(=pb.load_dataset(dataset="game_revenue", tbl_type="duckdb")
data
)=11) # expect 11 columns in the table
.col_count_match(count=2000) # expect 2,000 rows in the table
.row_count_match(count=0, inverse=True) # expect that the table has rows
.row_count_match(count# compare column count against
.col_count_match( =pb.load_dataset( # that of another table
count="game_revenue", tbl_type="pandas"
dataset
)
)
.interrogate()
)
validation
Preview of Input Table
DuckDBRows2000Columns11 |
|||||||||||