Pointblank Validation | |||||||||||||
2025-01-20|18:18:13 Polars |
|||||||||||||
STEP | COLUMNS | VALUES | TBL | EVAL | UNITS | PASS | FAIL | W | S | N | EXT | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#4CA64C | 1 |
|
✓ | 13 | 13 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C66 | 2 |
|
✓ | 13 | 11 0.85 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 3 |
|
✓ | 13 | 13 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 4 |
|
✓ | 1 | 1 1.00 |
0 0.00 |
— | — | — | — | |||
#4CA64C | 5 |
|
✓ | 1 | 1 1.00 |
0 0.00 |
— | — | — | — | |||
2025-01-20 18:18:13 UTC< 1 s2025-01-20 18:18:13 UTC |
Apply Validation Rules to Multiple Columns
Create multiple validation steps by using a list of column names with columns=
.
import pointblank as pb
= (
validation
pb.Validate(=pb.load_dataset(dataset="small_table", tbl_type="polars")
data
)=["a", "c", "d"], value=0) # check values in 'a', 'c', and 'd'
.col_vals_ge(columns=["date_time", "date"]) # check for the existence of two columns
.col_exists(columns
.interrogate()
)
validation
Preview of Input Table
PolarsRows13Columns8 |
||||||||