The users_daily_dd() function generates a data dictionary based on the users_daily table.

users_daily_dd(
  size = c("small", "medium", "large", "xlarge", "preview"),
  quality = c("perfect", "faulty"),
  type = c("tibble", "data.frame", "duckdb")
)

Arguments

size

A keyword that allows getting different variants of the table based on the size of player base. The default "small" table has the lowest number of players/records. Increasing in size, we can also opt for the "medium", "large", or "xlarge" versions.

quality

The data quality level of the returned dataset. There are two options: (1) "perfect" provides a pristine table with no errors at all and (2) "faulty" gives you a table with a multitude of errors.

type

The table return type. By default, this is a "tibble" but a "data.frame" can instead be returned if using that keyword. If you have the duckdb package installed, you can instead obtain the table as an in-memory DuckDB database table.

Value

A ptblank_informant object.

Examples


# Get a preview of the `users_daily` dataset
# with the 'preview' size option
users_daily_dd(size = "preview")
#> # A tibble: 200 × 23
#>    player_id       login_date sessions_day playtime_day n_iap_day n_ads_day
#>    <chr>           <date>            <int>        <dbl>     <int>     <int>
#>  1 SBPFOHCVMNQI568 2015-01-01            1         34.9         1         4
#>  2 YMKOHGVFZWLJ836 2015-01-01            2         44.3         2         5
#>  3 DLCKJEZRSIGW561 2015-01-02            1          5.4         1         1
#>  4 SBPFOHCVMNQI568 2015-01-02            2         56.2         2         6
#>  5 IGOFAEVXNTUW479 2015-01-03            1         27.8         0         5
#>  6 LKCUQHXDRWAZ134 2015-01-03            1         22.3         1         3
#>  7 RNWFDZOSQPMB164 2015-01-03            1         10.1         1         2
#>  8 SBPFOHCVMNQI568 2015-01-03            2         32           1         2
#>  9 SOBKUJPREVCZ874 2015-01-03            1          8.5         1         1
#> 10 TDRXCWIOZEYM241 2015-01-03            2         37.3         1         5
#> # ℹ 190 more rows
#> # ℹ 17 more variables: rev_iap_day <dbl>, rev_ads_day <dbl>, rev_all_day <dbl>,
#> #   start_day <date>, sessions_total <int>, playtime_total <dbl>,
#> #   level_reached <dbl>, in_ftue <lgl>, at_eoc <lgl>, is_customer <lgl>,
#> #   n_iap_total <int>, n_ads_total <int>, rev_iap_total <dbl>,
#> #   rev_ads_total <dbl>, rev_all_total <dbl>, country <chr>, acquisition <chr>